
Towards Full-Lifecycle Security
Enforcement of Hypervisors

Qiang Liu, PostDoc@EPFL

Outline

Introduction to Hypervisors

A Full-Lifecycle Enforcement of System Security

Hypervisors: Ahead-of-Release Bug Fixes

Hypervisors: In Production Attack Mitigation

Open Questions and Future Work

2

A Predestined Journey to the Cloud

A friend of mine is scaling his AI workloads …

- 💵 Develop an AI-powered service
- 😎 Have rapidly increasing demand
- 😫 Struggle with buying, shipping, and setup

physical hardware. TIME IS MONEY!
- 🤔 Require AI workloads to be on-demand, scalable,

and cost-efficient
- 💵💵 Leverage the Cloud for on-demand resources,

but how is this possible?

3

Introduction to Hypervisors

Hypervisors create virtual machines

Hypervisors: Logical Concepts and Core Isolation

4

Guest

Hardware

Hypervisor

Hardware

Guest
VM

Guest
VM

Hypervisor

Hardware

Guest VM

Remote
Hardware

No hypervisor
the guest controls
hardware directly

With hypervisor
the guest appears to

control hardware

With pooling
the guest can scale resources

(e.g., GPUs) as needed for
workloads like AI

smp40-m128G smp20-m64G smp40-m128G-gpu5

Hypervisors: Attacker’s Return on Investment (ROI)

Cost↘

QEMU/KVM CVEs on the rise

- 🏆 Due to fuzzing

Hyper-V/ESXi CVEs consistently

- ✅ Closed-source
- 🙊 Internal fixes
- 😭 Lack of sanitizers

5

Introduction to Hypervisors

Hypervisors: Attacker’s Return on Investment (ROI)

Gain

- VM escape
- Data exfiltration
- Privilege escalation
- Service disruption / DoS
- Stealth persistence

- Horizontal move

6

Introduction to Hypervisors

Outline

Introduction to Hypervisors

A Full-Lifecycle Enforcement of System Security

Hypervisors: Ahead-of-Release Bug Fixes

Hypervisors: In Production Attack Mitigation

Open Questions and Future Work

7

A Full-Lifecycle Enforcement of System Security

8

Ahead-of-release
bug fixes

In-production
attack mitigation

Source Binary

Exploit

Exploitation
as evaluation

Knowledge

A Full-Lifecycle Enforcement of System Security

A Full-Lifecycle Enforcement of System Security

9

Ahead-of-release
bug fixes

In-production
attack mitigation

Source Binary

Exploit

Exploitation
as evaluation

Knowledge

A PhD isn’t about solving everything—
it’s about solving one hard problem really well.

In this talk, I’ll focus on the ahead-of-release bug finding part,
while leaving many exciting directions—such as in production

mitigation, exploit-based evaluation, and research beyond
hypervisors—for future work.

A Full-Lifecycle Enforcement of System Security

Outline

Introduction to Hypervisors

A Full-Lifecycle Enforcement of System Security

Hypervisors: Ahead-of-Release Bug Fixes

Hypervisors: In Production Attack Mitigation

Open Questions and Future Work

10

Fuzzing: the most widely adopted and effective approach for bug discovery

Threat model: the guest VM is not trusted; the attacker has the root privilege

Two research questions:

Hypervisors: Ahead-of-Release Bug Fixes

11

How to drive arbitrary
hypervisors in a unified

framework?

Execution Environment Input Generation

Hypervisors: Ahead-of-Release Bug Fixes

How to generate
high-quality inputs for

hypervisor testing?

Fuzzing: the most widely adopted and effective approach for bug discovery

Threat model: the guest VM is not trusted; the attacker has the root privilege

Two research questions:

Hypervisors: Ahead-of-Release Bug Fixes

12

How to drive arbitrary
hypervisors in a unified

framework?

How to generate
high-quality inputs for

hypervisor testing?

Execution Environment Input Generation
Hyper-Cube[NDSS20]

Nyx[SEC21]
Morphuzz [SEC22]

*HyperPill[SEC24]🏆
*HyperARM

V-Shuttle [CCS21]
Morphuzz [SEC22]
MundoFuzz [SEC22]
*ViDeZZo [S&P23]
*Truman [NDSS25]

An asterisk (*) denotes my own work.

Hypervisors: Ahead-of-Release Bug Fixes

What do all the following hypervisors have in common?

- All hypervisors implement the same hardware virtualization interface

A snapshot-based Hypervisor Dock HyperPill [SEC24]

13

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

Ubuntu Guest

Hardware

Windows
Guest

Hardware

macOS Guest

Hardware

What do all the following hypervisors have in common?

- All hypervisors implement the same hardware virtualization interface
- Trap-and-emulate: execute most guest instructions natively on hardware but trap and emulate

“some” instructions, e.g., in/out (x86), mrs/msr (arm)

A snapshot-based Hypervisor Dock HyperPill [SEC24]

14

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

Root
Mode

VMNon-Root
Mode

Ring3

Ring0

Ring3

Ring0

QEMU

Linux KVM

VMExit VMEntry

EL0

EL1

EL2

QEMU

Linux KVM

trap eret

VM

What do all the following hypervisors have in common?

- All hypervisors implement the same hardware virtualization interface
- Trap-and-emulate: execute most guest instructions natively on hardware but trap and emulate

“some” instructions, e.g., in/out (x86), mrs/msr (arm)

A snapshot-based Hypervisor Dock HyperPill [SEC24]

15

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

Root
Mode

VMNon-Root
Mode

Ring3

Ring0

Ring3

Ring0

QEMU

Linux KVM

VMExit VMEntry

EL0

EL1

EL2

QEMU

Linux KVM

trap eret

VM

What do all the following hypervisors have in common?

- All hypervisors implement the same hardware virtualization interface
- Trap-and-emulate: allow us to have a unified view of the hypervisor

A snapshot-based Hypervisor Dock HyperPill [SEC24]

16

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

Root
Mode

VMNon-Root
Mode

Ring3

Ring0

Ring3

Ring0

QEMU

Linux KVM

VMExit VMEntry

EL0

EL1

EL2

QEMU

Linux KVM

trap eret

VM

What do all the following hypervisors have in common?

- All hypervisors implement the same hardware virtualization interface
- Trap-and-emulate: allow us to have a unified view of the hypervisor
- Let’s snapshot the host memory and inject inputs (via “some” instructions) into it

A snapshot-based Hypervisor Dock HyperPill [SEC24]

17

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

Root
Mode

VMNon-Root
Mode

Ring3

Ring0

Ring3

Ring0

QEMU

Linux KVM

VMExit VMEntry

EL0

EL1

EL2

QEMU

Linux KVM

trap eret

VM

18

Hypervisor

VM Exit

Some instructions
from Guest VM

VM Entry

vmexit reason

A snapshot of
host’s memory

A snapshot-based Hypervisor Dock HyperPill [SEC24]

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

19

Hypervisor

VM Exit

Some instructions
from Guest VM

VM Entry

vmexit reason

A snapshot of
host’s memory

A snapshot-based Hypervisor Dock HyperPill [SEC24]

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

Input/VM message that a hypervisor can take

- Port I/O (PIO): in/out instructions (x86 only)
- Memory-Mapped I/O (MMIO): memory load/store

instructions, e.g., mov (x86), ld/st (ARM)
- Access to control and status registers: rdmsr/wrmsr

(x86) and mrs/msr (ARM)
- Hypercalls: vmcall (x86) or hvc (ARM)
-
- Access to prefilled memory for DMA requests: Virtual

devices may read from or write to guest memory
regions pre-filled with input data via DMA

20

Hypervisor

VM Exit

Some instructions
from Guest VM

VM Entry

vmexit reason

A snapshot of
host’s memory

A snapshot-based Hypervisor Dock HyperPill [SEC24]

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

Four steps to drive a hypervisor to run

- Modify the vmexit reason and its parameters
- For x86, the vmexit reason and its parameters (named

qualification) are stored in an memory object named
Virtual Machine Control Structure (VMCS)

- For ARM64, the vmexit reason and its parameters are
stored in different system registers such as ESR_EL2,
FAR_EL2, HPFAR_EL2

21

Hypervisor

VM Exit

Some instructions
from Guest VM

VM Entry

vmexit reason

A snapshot of
host’s memory

A snapshot-based Hypervisor Dock HyperPill [SEC24]

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

Four steps to drive a hypervisor to run

- Modify the vmexit reason and its parameters
- VMCS (x86), ESR/FAR/HPFAR_EL2 (ARM)

- Let the hypervisor run to process this vm message
- Wait and stop at the VM-Entry
- For x86, it’s vmresume
- For ARM64, it’s the eret to EL1

22

Hypervisor

VM Exit

Some instructions
from Guest VM

VM Entry

vmexit reason

A snapshot of
host’s memory

A snapshot-based Hypervisor Dock HyperPill [SEC24]

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

Four steps to drive a hypervisor to run

- Modify the vmexit reason and its parameters
- VMCS (x86), ESR/FAR/HPFAR_EL2 (ARM)

- Let the hypervisor run to process this vm message
- vmresume (x86), eret to EL1 (ARM)

- Reset PC to a vmexit after each vm message
- Reset the whole snapshot if done

- All system registers, dirty pages

reset

23

Hypervisor

VM Exit

Some instructions
from Guest VM

VM Entry

vmexit reason

A snapshot of
host’s memory

Knowledge-based Input Generation ViDeZZo [SP23] Truman [NDSS25]

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Input Generation

A typical sequence of vm messages

- mmio_write()*rand()
- mem_write_for_dma()*rand()
- mmio_write()*1 reset

24

Hypervisor

VM Exit

Some instructions
from Guest VM

VM Entry

vmexit reason

A snapshot of
host’s memory

Knowledge-based Input Generation ViDeZZo [SP23] Truman [NDSS25]

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Input Generation

A typical sequence of vm messages

- mmio_write()*rand()
- mem_write_for_dma()*rand()
- mmio_write()*1 reset

A snapshot of host’s memory

Guest physical memoryHypervisor
code

MMIOCode
pages

DMA
pages

Knowledge-based Input Generation ViDeZZo [SP23] Truman [NDSS25]

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Input Generation

25

Three dependencies

vm message len data

sizeof

vm message 1 vm message 2

a = 1; if (a) { } se
tu

p

transmission

cleanup

Intra-message
dependency

A field in a message may be
dependent on another field

Inter-message
dependency

A field in a message may be
dependent on another field

State dependency

A (bus-hidden) component
follows a finite state machine

Knowledge-based Input Generation ViDeZZo [SP23] Truman [NDSS25]

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Input Generation

26

Automatic extraction of three dependencies

- Knowledge is encoded in different formats
- From hypervisor code, hard

- Open-source requirement, no abstraction
- From the Linux Kernel drivers, easier

- Mostly open-source, with abstraction

Linux kernel
drivers Hypervisor

Specification

Results of Hypervisor Fuzzing

27

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing

- With ViDeZZo/Truman/HyperPill, we found 108 (54 due to Truman) security bugs covering 6
hypervisors, QEMU/VBox/Hyper-V/macOS virtualization framework/VMware/Parallels

- We manage to extract three kinds of dependencies for 29 virtual devices (including virtio),
covering various categories, i.e., audio, storage, network, display, and USB

- HyperPill is the first tool to analyze arbitrary x86 (now extended to ARM64) hypervisors across
all major attack-surfaces (i.e., PIO/MMIO/Hypercalls/DMA)

Insights from bug findings for mitigations

- MMIO can be re-entered via DMA
- Hijacked IRQ handlers can be easily triggered
- Sub-page metadata needs fine-grained protection

Outline

Introduction to Hypervisors

A Full-Lifecycle Enforcement of System Security

Hypervisors: Ahead-of-Release Bug Fixes

Hypervisors: In Production Attack Mitigation

Open Questions and Future Work

28

Hypervisors: In Production Attack Mitigation

29

Retrofitting and
De-privileging

Adapt existing
hypervisor code to

enforce the principle of
least privilege

Formal
Verification

Adapt an existing
hypervisor for

verification against
security properties

Secure
Reimplementation

Apply various
techniques to

strengthen hypervisor
security

Hypervisors: In Production Attack Mitigation

Retrofitting and De-privileging

30

Hypervisors: In Production Attack Mitigation

N
on

-r
oo

t
m

od
e

N
on

-r
oo

t
m

od
e

R
oo

t
m

od
e

R
oo

t
m

od
e

rin
g3

rin
g0

rin
g3

rin
g0

rin
g3

rin
g0

rin
g3

rin
g0

Dom0

Xen

VM0

Xen

VM1

per-VM

microvisor

VM0

per-VM

Nova [Eurosys10]

Xen

VM0

Xoar [SOSP11]

CloudVisor

CloudVisor
[SPSP11]

Xen

VMDom
0

Dom0

Secure Monitor

VM0

Slice-NShdSrv

Nexen [NDSS17]

QEMU

Linux/KVM

VM0

QEMU/KVM

QEMU

Linux

VM0

DeHype [NDSS13]

KVM

Hyperlet

QEMU

Linux

VM0

KVMHyperLock

Privileging
Nested virtualization

Compartmentalization

Formal Verification SeKVM [S&P21,SOSP21]

31

Retrofitting enables formal verification

- It took seL4 ten person-years to verify 9K LoC
- It took CertiKOS three person-years to verify 6.5K LoC
- It took SeKVM one person-year to retrofit KVM (2M LoC) to KServ and KCore (3.8K LoC) and two

person-years to complete the verification
- KVM unit tests: 17%-28% overhead, Real application workload: less than 10% overhead

Hypervisors: In Production Attack Mitigation

Formal verification has not scaled to large codespace

Formal Verification SeKVM [S&P21,SOSP21]

32

A careful definition of the threat model enables one kind of proof

- Each VM’s data confidentiality and integrity are protected from another VM
- i.e., other data and code are not protected, availability is not guaranteed
- and concurrency is the key feature to be verified

- KServ/Other VMs may be controller by attackers
- i.e., guest root privilege, access of guest physical memory, abuse of KCore’s interfaces

exposed to KServ/VM, running on the same machine, running one or more CPUs
- Side-channel attacks are not considered

Hypervisors: In Production Attack Mitigation

Proof of data confidentiality and integrity can be converted into the proof of
noninterference assertion, which is well defined

Formal Verification SeKVM [S&P21,SOSP21]

33

The game is on!

- Convert C/ASM implementation to Coq representation
- Write Coq specs by defining security-preserving layers

- Each implementation refines its interface specification
- The layer refinement relation is transitive and therefore the

top layer specifies the entire system
- Prove the top layer satisfied with noninterference assertions

considering concurrency, i.e., prove that KServ and VM won’t
break other’s VM’s data confidentiality and integrity

Hypervisors: In Production Attack Mitigation

Spec
Code

C1@S0⊑S1

C2@S1⊑S2

C3@S2⊑S3

C4@S3⊑S4

Secure Reimplementation

34

Reimplement hypervisors

- in Rust, e.g., Amazon’s Firecracker, KVM-based, musl libc-based
- Started with a branch of Google Chrome’s crosvm
- Very lightweight and fast for multiple-tenant and function-based services
- A minimum design with 70K LoC of Rust

- No support of BIOS, Windows, legacy device or PCI, or VM migration
- Virtual devices: virtio-net/block, serial/keyboard, timers and interrupt controllers

- Jailer: a wrapper around Firecracker to sandbox it (e.g., chroot, pid/network namespaces,
seccomp with 24 whitelist syscalls etc.)

Typical techniques for mitigating attacks include the use of memory-safe
programming languages, minimal implementations, sandboxing

Hypervisors: In Production Attack Mitigation

Secure Reimplementation

35

Reimplement hypervisors

- with dedicated hardware, e.g., Amazon’s Nitro System
- Nitro Hypervisor - A KVM-based, firmware-based, and deliberately minimized hypervisor
- Nitro Cards - Dedicated PCI devices + firmware, with single-root input/output virtualization

(SR-IOV) technology, implementing one virtual device with one virtual function
- Nitro Security Chip — Enabling a secure boot process for the overall system

Typical techniques for mitigating attacks include the use of memory-safe
programming languages, minimal implementations, sandboxing; decomposition
of the software components, secure boot (integrity measurement)

Hypervisors: In Production Attack Mitigation

Secure Reimplementation

36

Reimplement hypervisors

- by exploring architectural features, e.g., Android’s pKVM
- pKVM enables stage 2 protection in host context
- pKVM requires IOMMU hardware for every DMA-capable device in the system
- Use shared bounce buffer for virtio’s data and its metadata
- Use crosvm that is written in Rust with a few virtual devices, virtio-blk, vhost-vsock,

virtio-pci, pl030 real time clock (RTC), and 16550a UART

Typical techniques for mitigating attacks include the use of memory-safe
programming languages, minimal implementations, sandboxing; decomposition
of the software components, secure boot (integrity measurement); architectural
features; finally, it all comes down to trusting KVM!

Hypervisors: In Production Attack Mitigation

Outline

Introduction to Hypervisors

A Full-Lifecycle Enforcement of System Security

Hypervisors: Ahead-of-Release Bug Fixes

Hypervisors: In Production Attack Mitigation

Open Questions and Future Work

37

Open Questions

- How to generate quality input for all VM exits?
- How to detect memory corruptions in closed-source hypervisors?
- How to detect logic errors in Rust-based hypervisors?
- How to rehost arbitrary cell phone firmware?
- How to detect and prevent race conditions in hypervisors?
- How to automatically exploit QEMU/KVM bugs?
- How to prevent QEMU/KVM exploits in the wild?

38

Hypervisor research also yields broadly applicable techniques

Future Work 1: Knowledge is Power!

 SPEC

 CODE

 REVIEW

LLM + KG

REVIEW=Code review
SPEC=Specification
LLM=Large Language Model
KG=Knowledge Graph

A super model for encoding
structured and unstructured

knowledge in system software

No human can digest

- 14K pages of ARM SPEC
- 10GB reviews of QEMU
- 2M LoC of QEMU
- 29M LoC of Linux kernel
- …

Code-Survey (LLM for eBPF)
https://arxiv.org/abs/2410.01837

A super model brings

- Input grammar
- Test coverage insights
- Regression detection
- Crash impact
- Mitigation completeness
- Coding suggestions
- Natural language querying
- Debugging helper
- …

39

Future Work 2: AI Infrastructure Security

40

A friend of mine is scaling his AI workloads …

- Uploading model weights that must not be exposed to the cloud provider
- How to prevent online model weights from being stolen?

- Demanding more than one machine can offer, at the cost of system isolation
- How to adopt OS/hypervisors to remote resources, e.g., GPU, memory?

- GPU! GPU! GPU! But no proper memory protection, and attack-prone software all around
- How to stop the memory war of GPU?

Conclusion and Q&A

Hypervisors create virtual machines and are under attacks

Full-lifecycle enforcement of system security requires

- Ahead-of-release bug fixes and in production attack mitigation
- We contribute to hypervisor fuzzing with a snapshot-based hypervisor dock and definition and

extraction vm message dependencies
- Retrofitting and de-privileging, formal verification, and secure reimplementation are used to

mitigate attacks to hypervisors

Find me at EPFL: BC154

Email: qiang.liu@epfl.ch

41

Backup Slides

42

How to stop virtual device exploits in the wild?

43

Arbitrary r/w
primitives

Information leakage
primitive

MMIO
DMA

Device
spec

Source
code or
Binary

Kicking primitive

Monitor MMIO/DMA
access pattern

How to stop virtual device exploits in the wild?

44

Arbitrary r/w
primitives

Information leakage
primitive

MMIO
DMA

Device
spec

Source
code or
Binary

Kicking primitive

Monitor MMIO/DMA
access pattern

Inject shellcode or
reuse existing code

Hijack function
pointer (e.g.,

interrupt handler)

Invoke the hijacked
function pointer

Enforce CFI or
fine-grained w^x

Explicit and transitive trust of the kernel and hypervisor

45

Trust

Kernel security
(supported by

hypervisor if any)

Security of
hypervisor itself

Trusted execution
environment (TEE)

H
K

H
K

H
K

H
K

Hypervisor
OS Kernel

In-trust domain
trusted execution

K
H

Host
App

Host
Kernel

Guest
App

Guest
Kernel

Hypervisor TEE

✅
✅

✅

✅

❌
❌

❌

❌

✅ Trusted

❌ Untrusted

❌

FirmGuide [ASE21]
ECMO [CCS21]

Explicit and transitive trust of the kernel and hypervisor

46

Trust

Kernel security
(supported by

hypervisor if any)

Security of
hypervisor itself

Trusted execution
environment (TEE)

H
K

H
K

H
K

H
K

Hypervisor
OS Kernel

In-trust domain
trusted execution

K
H

Host
App

Host
Kernel

Guest
App

Guest
Kernel

Hypervisor TEE

✅
✅

✅

✅

❌
❌

❌

❌

✅ Trusted

❌ Untrusted

❌

❌

ViDeZZo [SP23]
HyperPill [SEC24]
Truman [NDSS25]

FirmGuide [ASE21]
ECMO [CCS21]

Explicit and transitive trust of the kernel and hypervisor

47

Trust

Kernel security
(supported by

hypervisor if any)

Security of
hypervisor itself

Trusted execution
environment (TEE)

H
K

H
K

H
K

H
K

Hypervisor
OS Kernel

In-trust domain
trusted execution

K
H

Host
App

Host
Kernel

Guest
App

Guest
Kernel

Hypervisor TEE

✅
✅

✅

✅

❌
❌

❌

❌

✅ Trusted

❌ Untrusted

❌

ViDeZZo [SP23]
HyperPill [SEC24]
Truman [NDSS25]

FirmGuide [ASE21]
ECMO [CCS21]

Explicit and transitive trust of the kernel and hypervisor

48

Trust

Kernel security
(supported by

hypervisor if any)

Security of
hypervisor itself

Trusted execution
environment (TEE)

H
K

H
K

H
K

H
K

Hypervisor
OS Kernel

In-trust domain
trusted execution

K
H

Host
App

Host
Kernel

Guest
App

Guest
Kernel

Hypervisor TEE

✅
✅

✅

✅

❌
❌

❌

❌

✅ Trusted

❌ Untrusted

❌

❌

❌

ViDeZZo [SP23]
HyperPill [SEC24]
Truman [NDSS25]

FirmGuide [ASE21]
ECMO [CCS21]

Tango: Extracting Higher-Order Feedback through
State Inference (RAID’24 Best Paper Award)

49

Message Format

2020 2021 2022 2023 2024 2025 2026

AFLNet

StateAFL

SGFuzz ChatAFLNyxNet

Finite State Machine

NSFUZZ

Return
Codes

Memory
Snapshot

State
Variables COV!

Tango

How can we extract the states in a generic way?

Model-guided kernel execution FirmGuide [ASE21]

How to run a Linux kernel for x86? QEMU!

What about running Linux kernels used in ARM/MIPS-based IoT devices?

- Challenges: ARM/MIPS devices have fragmented peripherals
- Aim at a minimum best effort to boot with an interactive shell [FirmGuide ASE21]

50

ARM chip example: plxtech,nas782x Fidelity for booting
CPU Arm11MPCore ✅ High

Memory up to 512M ✅ High
Interrupt controller plxtech,nas782x-rps ❌ High

Time-related rps-timer, oscillator, sysclk, plla, pllb, stdclk, twdclk ❌ High
UART ns16550a ✅ High

Other peripherals gmacclk, pcie, watchdog, sata, nand, ethernet, ehci, leds ❌ Low

Linux kernel subsystem defines a state machine driven by driver behavior

A peripheral model = a state machine + driver behavior as transition conditions

Model-guided kernel execution FirmGuide [ASE21]

51

Interrupt
Subsystem

Driver 1 Driver 2

[TC1]

[TC3] [TC2]

Driver 1: { D1TC1, D1TC2, D1TC3 }
Driver 2: { D2TC1, D2TC2, D2TC3 }

Model-guided kernel execution FirmGuide [ASE21]

52

It starts

State 1

Our peripheral model is at state 1 and have monitored the behavior of the Linux
kernel, specifically by logging MMIO rw sequences (MMIO R/W Seqs)

Model-guided kernel execution FirmGuide [ASE21]

53

State 1

MMIO R/W

Our peripheral model goes to state 2 if the MMIO R/W Seq matches D1TC1

Model-guided kernel execution FirmGuide [ASE21]

54

State 2

MMIO R/W

Linux kernel runs

Model-guided kernel execution FirmGuide [ASE21]

55

State 2

MMIO R/W MMIO R/W

Our peripheral model is at state 2 and have monitored another MMIO R/W Seq

Model-guided kernel execution FirmGuide [ASE21]

56

State 2

MMIO R/W MMIO R/W

Our peripheral model goes to state 3 with a value back

Model-guided kernel execution FirmGuide [ASE21]

57

State 3

MIMO R/W MIMO R/W

Until we get an interactive shell

Model-guided kernel execution FirmGuide [ASE21]

58

Booted

MIMO R/W MIMO R/W MIMO R/W

Techniques

- Use KLEE to extract MMIO R/W Seqs from Linux kernel drivers
- Use a template render to composite a QEMU machine

Results

- We first enabled the fuzzing of embedded Linux kernels for 26 SoCs
- We managed to develop exploits, which can never be easily done without

successful rehosting.
- We showed that backporting kernel patches for IoT devices was not yet

timely.

Model-guided kernel execution FirmGuide [ASE21]

59

