Towards Full-Lifecycle Security
Enforcement of Hypervisors
Qiang Liu, PostDoc@EPFL

=Pi-L

@ =
/

e® hexhive

Outline

Introduction to Hypervisors

A Full-Lifecycle Enforcement of System Security
Hypervisors: Ahead-of-Release Bug Fixes
Hypervisors: In Production Attack Mitigation

Open Questions and Future Work

Introduction to Hypervisors

A Predestined Journey to the Cloud

A friend of mine is scaling his Al workloads ...

- EB Develop an Al-powered service

- ™% Have rapidly increasing demand

- (& Struggle with buying, shipping, and setup
physical hardware. TIME IS MONEY!

- @/ Require Al workloads to be on-demand, scalable,
and cost-efficient

- HBEE Leverage the Cloud for on-demand resources,
but how is this possible?

vimware 0] Microsoft @emMu
FSXi =m Hyper-V 1KV M &

,,n | Hypervisor.Framework -
£ ' Virtualization on macOS

' Prolect w

Hypervisors: Logical Concepts and Core Isolation

Hypervisors create virtual machines ||Parallels’ & Firecracker
smp40-m128G smp20—m64G smp40—m’I286—gpu5
Guest ||| Guest
Guest VM ‘ VM Guest VM “
» Hypervisor » Hypervisor
Remote
Hardware Hardware Hardware
Hardware

No hypervisor With hypervisor With pooling
the guest controls the guest appears to the guest can scale resources
hardware directly control hardware (e.g., GPUs) as needed for

workloads like Al

Introduction to Hypervisors

Hypervisors: Attacker’s Return on Investment (ROI)

COSt\ Number of CVEs per Vendor per Year

Vendor
. I Microsoft Hyper-V
QEMU/KVM CVEs on the rise 001 s Linux/KVM
mEmm QEMU
_ W D £ X 250 1 VirtualBox .
= Due to fuzzing VMWare ESXi

331

N
o
o

Hyper-V/ESXi CVEs consistently

CVE Count

=
w
o

- Closed-source
- € Internal fixes
- @& Lack of sanitizers

Introduction to Hypervisors

Hypervisors: Attacker’s Return on Investment (ROI)

VULNERABILITIES

Gain VENOM Vulnerability Opens Millions

of Virtual Machines to Attack

e . Microsoft fixes under-attack privilege-
escalation holes in Hyper-V

Plus: Excel hell, angst for Adobe fans, and life's too Snort for Cisco

- VM escape

- Data exfiltration

- Privilege escalation

- Service disruption / DoS
- Stealth persistence

A |ain Thomson Wed 15 Jan 2025 01:33 UTC

PATCH TUESDAY The first Patch Tuesday of 2025 has seen Microsoft address three
under-attack privilege-escalation flaws in its Hyper-V hypervisor, plus plenty more
problems that deserve your attention.

- Horizontal move

The Hyper-V vulnerabilities are CVE-2025-21333, CVE-2025-21334, and CVE-2025-
pARKEREULIwere already being exploited i in the W|Id as Zero—day They are rated
important in terms of s¢ e

CVE-2025-22224, CVE-2025-22225, CVE-2025-

22226: Zero-Day Vulnerabilities in VMware ESXi, B n
Workstation and Fusion Exploited

biSakhat -

A Guest-to-Host Escape on
€ suwsmano il QEMU/KVM Virtio Device
an isory for three flaws in several VMware products Coll f Cyber S J Ui
that were eXPIorted in the wild as days. O izations are advised to e ALy

Zhulan Shag, Jian Weng Yue Zhang

apply the available patches. P EEE7 S LTV

Outline

Introduction to Hypervisors

A Full-Lifecycle Enforcement of System Security

A Full-Lifecycle Enforcement of System Security

A Full-Lifecycle Enforcement of System Security

Ahead-of-release In-production
bug fixes

A BIT FASTER, l@r ENOUGH

attack mitigation

N |Craft a
exploit |

Execute
arbitrary |

owed

Exploitation
as evaluation

A Full-Lifecycle Enforcement of System Security

A Full-Lifecycle Enforcement of System Security

A PhD isn’t about solving everything—
It's about solving one hard problem really well.

In this talk, I'll focus on the ahead-of-release bug finding part,
while leaving many exciting directions—such as in production
mitigation, exploit-based evaluation, and research beyond
hypervisors—for future work.

Outline

Introduction to Hypervisors
A Full-Lifecycle Enforcement of System Security

Hypervisors: Ahead-of-Release Bug Fixes

10

Hypervisors: Ahead-of-Release Bug Fixes

Hypervisors: Ahead-of-Release Bug Fixes

Fuzzing: the most widely adopted and effective approach for bug discovery
Threat model: the guest VM is not trusted; the attacker has the root privilege

Two research questions:

_—
(==} (=]
,,,

L
Execution Environment Input Generation
How to drive arbitrary How to generate
hypervisors in a unified high-quality inputs for

framework? hypervisor testing?

11

Hypervisors: Ahead-of-Release Bug Fixes

Hypervisors: Ahead-of-Release Bug Fixes

Fuzzing: the most widely adopted and effective approach for bug discovery
Threat model: the guest VM is not trusted; the attacker has the root privilege

Two research questions:

:)
(=) (=)
W
Execution Environment Input Generation
Hyper-Cube[NDSS20] V-Shuttle [CCS21]
Nyx[SEC21] How to drive arbitrary How to generate Morphuzz [SEC22]
Morphuzz [SEC22] hypervisors in a unified high-quality inputs for MgndoFuzz [SEC22]

*HyperPill[SEC24] 2 framework? hypervisor testing? *ViDeZZo [S&P23]
*HyperARM *Truman [NDSS25]

12
An asterisk (*) denotes my own work.

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

A snapshot-based Hypervisor Dock hyperpill sec241

What do all the following hypervisors have in common?

- All hypervisors implement the same hardware virtualization interface

Ubuntu Guest Wén:eosv,zls macOS Guest
J anwareo -- Microsoft a Q EMU
£ @R HyperV A KVM
Hardware Hardware Hardware

13

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

A snapshot-based Hypervisor Dock hyperpill sec241

What do all the following hypervisors have in common?

- All hypervisors implement the same hardware virtualization interface
- Trap-and-emulate: execute most guest instructions natively on hardware but trap and emulate
“some” instructions, e.g., infout (x86), mrs/msr (arm)

Ring3
NOHN'T:;: _______________________________ VM ELOQEMU o
RingO
___ ELT
. Ring3 QEMU VMEXxit VMEntry ~ —mmimmimioioioo B t .r_a.Q.l._._.T eret
Vel e coocmsmimaes Yoo L EL2 Linux KVM Q
- Linux KVM Q ___

14

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

A snapshot-based Hypervisor Dock hyperpill sec241

What do all the following hypervisors have in common?

- All hypervisors implement the same hardware virtualization interface
- Trap-and-emulate: execute most guest instructions natively on hardware but trap and emulate
“some” instructions, e.g., infout (x86), mrs/msr (arm)

Non-Root
QEMUN
Miode Bo| T \ VM
N
ek A, eret
l\/?ggg EL2 Linux KVM Q

15

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

A snapshot-based Hypervisor Dock hyperpill sec241

What do all the following hypervisors have in common?

- All hypervisors implement the same hardware virtualization interface
- Trap-and-emulate: allow us to have a unified view of the hypervisor

Non-Root
QEMUN
Miode Bo| T \ VM
N
ek A, eret
l\/?ggg EL2 Linux KVM Q

16

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

A snapshot-based Hypervisor Dock hyperpill sec241

What do all the following hypervisors have in common?

- All hypervisors implement the same hardware virtualization interface
- Trap-and-emulate: allow us to have a unified view of the hypervisor
- Let's snapshot the host memory and inject inputs (via “some” instructions) into it

Non-Root
QEMUN
Miode Bo| T \ VM
N
ek A, eret
l\/?ggg EL2 Linux KVM Q

17

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

A snapshot-based Hypervisor Dock hyperpill sec241

Some instructions
from Guest VM

A
VM Exit VM Entry

vmexit reason

Hypervisor .a.

A snapshot of
host’'s memory

18

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

A snapshot-based Hypervisor Dock hyperpill sec241

Input/VM message that a hypervisor can take

- Port 1/0 (PIO): in/out instructions (x86 only)

Some instructions

- Memory-Mapped I/0 (MMIO): memory load/store from Guest VM
instructions, e.g., mov (x86), Id/st (ARM) , A
VM Exit VM Entry
- Access to control and status registers: rdmsr/wrmsr
(x86) and mrs/msr (ARM) vmexit reason
- Hypercalls: vmcall (x86) or hvc (ARM) Hypervisor -a-
- Access to prefilled memory for DMA requests: Virtual A snapshot of
devices may read from or write to guest memory host's memory

regions pre-filled with input data via DMA

19

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

A snapshot-based Hypervisor Dock hyperpill sec241

Four steps to drive a hypervisor to run

- Modify the vmexit reason and its parameters Some instructions

- For x86, the vmexit reason and its parameters (named from Guest VM
qualification) are stored in an memory object named A
Virtual Machine Control Structure (VMCS) VM Exit VM Entry
- For ARM64, the vmexit reason and its parameters are

stored in different system registers such as ESR_EL2, vmexitreason
Hypervisor .a.

FAR_EL2, HPFAR_EL2

A snapshot of
host’'s memory

20

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

A snapshot-based Hypervisor Dock hyperpill sec241

Four steps to drive a hypervisor to run

- Modify the vmexit reason and its parameters Some instructions
- VMCS (x86), ESR/FAR/HPFAR_EL2 (ARM) from Guest VM

- Let the hypervisor run to process this vm message A
- Wait and stop at the VM-Entry VM Exit W] =y

- For x86, it's vmresume .
vmexit reason
- For ARMG64, it's the eret to EL1 .
Hypervisor -a-
A snapshot of

host’'s memory

21

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Unified Execution Environment

A snapshot-based Hypervisor Dock hyperpill sec241

Four steps to drive a hypervisor to run

Modify the vmexit reason and its parameters Some instructions
- VMCS (x86), ESR/FAR/HPFAR_EL2 (ARM) from Guest VM

Let the hypervisor run to process this vm message st A
- vmresume (x86), eret to EL1 (ARM) VM Exit VM Entry

Reset PC to a vmexit after each vm message

vmexit reason

Reset the whole snapshot if done Hypervisor _a_
- All system registers, dirty pages

A snapshot of
host’'s memory

22

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Input Generation

Knowledge-based Input Generation vipezzo rsp231 Truman [NDss25]

A typical sequence of vm messages

i mmio_write()*rand() Some instructions
- mem_write_for_dma()*rand() from Guest VM

. : -—
- mmio_write()*1 . reset A
VM Exit VM Entry

vmexit reason

Hypervisor .a.

A snapshot of
host’'s memory

23

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Input Generation

Knowledge-based Input Generation vipezzo rsp231 Truman [NDss25]

A typical sequence of vm messages

- mmio_write()*rand()

= em_write_for_dma()*rand()
dmio_write()ﬂ

Some instructions
from Guest VM

reset A
VM Exit VM Entry

\ vmexit reason
pgl\él:s pCaogiZ MMIO Hypervisor .a.
< \ A snapshot of
Hyzg;v;sor Guest physical m}mory host's memory

A snapsho{host’s memory
24

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Input Generation

Knowledge-based Input Generation vipezzo rsp231 Truman [NDss25]

Three dependencies

vm message | len data

sizeof

Intra-message
dependency

A field in a message may be
dependent on another field

vm message 1 vm message 2

a=l1: — if(la>{}

Inter-message
dependency

A field in a message may be
dependent on another field

State dependency

A (bus-hidden) component
follows a finite state machine

25

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing: Input Generation

Knowledge-based Input Generation vipezzo rsp231 Truman [NDss25]

Automatic extraction of three dependencies

- Knowledge is encoded in different formats Specification
- From hypervisor code, hard /\

- Open-source requirement, no abstraction -
Linux kernel

- From the Linux Kernel drivers, easier . > Hypervisor
' drivers yp

- Mostly open-source, with abstraction

26

Hypervisors: Ahead-of-Release Bug Fixes/Hypervisors Fuzzing

Results of Hypervisor Fuzzing

- With ViDeZZo/Truman/HyperPill, we found 108 (54 due to Truman) security bugs covering 6
hypervisors, QEMU/VBox/Hyper-V/macOS virtualization framework/VMware/Parallels

- We manage to extract three kinds of dependencies for 29 virtual devices (including virtio),
covering various categories, i.e., audio, storage, network, display, and USB

- HyperPill is the first tool to analyze arbitrary x86 (now extended to ARM64) hypervisors across
all major attack-surfaces (i.e., PIO/MMIO/Hypercalls/DMA)

Insights from bug findings for mitigations

- MMIO can be re-entered via DMA
- Hijacked IRQ handlers can be easily triggered
- Sub-page metadata needs fine-grained protection

27

Outline

Introduction to Hypervisors
A Full-Lifecycle Enforcement of System Security
Hypervisors: Ahead-of-Release Bug Fixes

Hypervisors: In Production Attack Mitigation

28

Hypervisors: In Production Attack Mitigation

Hypervisors: In Production Attack Mitigation

Retrofitting and Formal Secure
De-privileging Verification Reimplementation
Adapt existing Adapt an existing Apply various
hypervisor code to hypervisor for techniques to
enforce the principle of verification against strengthen hypervisor

least privilege security properties security

29

Retrofitting and De-privilegin

Hypervisors: In Production Attack Mitigation

2 o L)
s 3 Privileging
2 Dom
B e ledbedl wiem B i Ed b oo wMo |t 73] | o eoranencon-c UMO | e TR e .
2o ¢ Nested virtualization
o £ Xen . .
T
.. Compartmentalization
(40)
g Fgm DomO perVM| [per-vM :||:||:| DomO
200018} 6000000058506565550000000005000d bodoETIEEEEEE,E0EEa5EEEEE0d bosEEEHEEUEEE0000000000000]hoaB00EEREABE60BA0000000AG v
£ .
& % Xen microvisor . [Cloudvisor | ShdSrv| [Slice-N
£ = e Secure Monitor \
Xen Nova [Eurosys10] Xoar [SOSP11] C['g;‘;\;ﬁ‘]’r Nexen [NDSS17]
A\,
()
3 % ~—~ /
= =
B L IS e T S Y| B UM |
2 o
52
g =
S
3 £ |QEmU QEMU || KVM QEMU
= O P APPSR b
R ypere
® c Linux/KVM : -
£ Linux
QEMU/KVM DeHype [NDSS13]

Hypervisors: In Production Attack Mitigation

Formal Ve riﬁcat i ON sckvmsaP21,s0sP21]

Retrofitting enables formal verification

- It took selL4 ten person-years to verify 9K LoC
- It took CertiKOS three person-years to verify 6.5K LoC
- It took SeKVM one person-year to retrofit KVM (2M LoC) to KServ and KCore (3.8K LoC) and two
person-years to complete the verification
- KVM unit tests: 17%-28% overhead, Real application workload: less than 10% overhead

Formal verification has not scaled to large codespace

31

Hypervisors: In Production Attack Mitigation

Formal Ve riﬁcat i ON sckvmsaP21,s0sP21]

A careful definition of the threat model enables one kind of proof

- Each VM'’s data confidentiality and integrity are protected from another VM
- l.e., other data and code are not protected, availability is not guaranteed
- and concurrency is the key feature to be verified
- KServ/Other VMs may be controller by attackers
- i.e., guest root privilege, access of guest physical memory, abuse of KCore’s interfaces
exposed to KServ/VM, running on the same machine, running one or more CPUs
- Side-channel attacks are not considered

Proof of data confidentiality and integrity can be converted into the proof of
noninterference assertion, which is well defined

32

Hypervisors: In Production Attack Mitigation

Formal Ve riﬁcat i ON sckvmsaP21,s0sP21]

The game is on!
E Spec
Code

- Convert C/ASM implementation to Coq representation

- Write Coq specs by defining security-preserving layers C4@S3CS4
- Each implementation refines its interface specification
- The layer refinement relation is transitive and therefore the = = - —
top layer specifies the entire system
- Prove the top layer satisfied with noninterference assertions 9
| C2@S1ES2

considering concurrency, i.e., prove that KServ and VM won’t
break other’s VM'’s data confidentiality and integrity

C1@SOLES1

33

Hypervisors: In Production Attack Mitigation

Secure Reimplementation

Reimplement hypervisors

- in Rust, e.g., Amazon'’s Firecracker, KVM-based, musl libc-based
- Started with a branch of Google Chrome’s crosvm
- Very lightweight and fast for multiple-tenant and function-based services
- A minimum design with 70K LoC of Rust
- No support of BIOS, Windows, legacy device or PCI, or VM migration
- Virtual devices: virtio-net/block, serial/keyboard, timers and interrupt controllers
- Jailer: a wrapper around Firecracker to sandbox it (e.g., chroot, pid/network namespaces,
seccomp with 24 whitelist syscalls etc.)

Typical techniques for mitigating attacks include the use of memory-safe
programming languages, minimal implementations, sandboxing

34

Hypervisors: In Production Attack Mitigation

Secure Reimplementation

Reimplement hypervisors

- with dedicated hardware, e.g.,, Amazon’s Nitro System
- Nitro Hypervisor - A KVM-based, firmware-based, and deliberately minimized hypervisor
- Nitro Cards - Dedicated PCl devices + firmware, with single-root input/output virtualization
(SR-IOV) technology, implementing one virtual device with one virtual function
- Nitro Security Chip — Enabling a secure boot process for the overall system

Typical techniques for mitigating attacks include the use of memory-safe
programming languages, minimal implementations, sandboxing; decomposition

of the software components, secure boot (integrity measurement)
85

Hypervisors: In Production Attack Mitigation

Secure Reimplementation

Reimplement hypervisors

- by exploring architectural features, e.g., Android’s pKVM

PKVM enables stage 2 protection in host context

PpKVM requires IOMMU hardware for every DMA-capable device in the system

Use shared bounce buffer for virtio’s data and its metadata

Use crosvm that is written in Rust with a few virtual devices, virtio-blk, vhost-vsock,
virtio-pci, plO30 real time clock (RTC), and 16550a UART

Typical techniques for mitigating attacks include the use of memory-safe
programming languages, minimal implementations, sandboxing; decomposition
of the software components, secure boot (integrity measurement); architectural

features; finally, it all comes down to trusting KVM!

36

Outline

Introduction to Hypervisors

A Full-Lifecycle Enforcement of System Security
Hypervisors: Ahead-of-Release Bug Fixes
Hypervisors: In Production Attack Mitigation

Open Questions and Future Work

37

Open Questions

- How to generate quality input for all VM exits?

- How to detect memory corruptions in closed-source hypervisors?
- How to detect logic errors in Rust-based hypervisors?

- How to rehost arbitrary cell phone firmware?

- How to detect and prevent race conditions in hypervisors?

- How to automatically exploit QEMU/KVM bugs?

- How to prevent QEMU/KVM exploits in the wild?

Hypervisor research also yields broadly applicable techniques

38

Future Work 1: Knowledge is Power!

No human can digest A super model brings
- 14K pages of ARM SPEC - Input grammar
- 10GB reviews of QEMU - Test coverage insights

- 2M LoC of QEMU
- 29M LoC of Linux kernel - Crash impact

- - Mitigation completeness
- Coding suggestions
Code-Survey (LLM for eBPF) :
- Natural language querying
https://arxiv.org/abs/2410.01837 .
- Debugging helper

A super model for encoding
structured and unstructured
REVIEW=Code review

SPEC=Specification knowledge in system software

LLM=Large Language Model
KG=Knowledge Graph

- Regression detection

39

Future Work 2: Al Infrastructure Security

A friend of mine is scaling his Al workloads ...

- Uploading model weights that must not be exposed to the cloud provider
- How to prevent online model weights from being stolen?

- Demanding more than one machine can offer, at the cost of system isolation
- How to adopt OS/hypervisors to remote resources, e.g., GPU, memory?

- GPU! GPU! GPU! But no proper memory protection, and attack-prone software all around
- How to stop the memory war of GPU?

40

Conclusion and Q&A

Hypervisors create virtual machines and are under attacks

Full-lifecycle enforcement of system security requires

- Ahead-of-release bug fixes and in production attack mitigation

- We contribute to hypervisor fuzzing with a snapshot-based hypervisor dock and definition and
extraction vm message dependencies

- Retrofitting and de-privileging, formal verification, and secure reimplementation are used to

mitigate attacks to hypervisors

Find me at EPFL: BC154

Email: giang.liu@epfl.ch

41

Backup Slides

How to stop virtual device exploits in the wild?

MMIO
DMA

Arbitrary r/w
primitives

Device

Spec
-

Source
code or

Information leakage
primitive

Binary
\/_

Kicking primitive

.5.
—
.5'—11

0
. —
-, - ="
S T mm o e o mm r mm or mm o mm o o mm s mm h s s o s o n mm n s = R =T

4 Monitor MMIO/DMA

! access pattern A

\
\
\
\
\

How to stop virtual device exploits in the wild?

Inject shellcode or
reuse existing code

v

—_ Hijack function

pointer (e.g.,
interrupt handler)

v

Invoke the hijacked
function pointer

" Enforce CFl or

fine-grained w”x

44

Explicit and transitive trust of the kernel and hypervisor

Kernel security
(supported by
hypervisor if any)

Hypervisor
OS Kernel

Y

X Security of
hypervisor itself

),

Trusted execution
environment (TEE)

x .
In-trust domain
Trusted trusted execution
> Untrusted

U

Y

FirmGuide [ASE21]
ECMO [CCS21]

Host
App

U

Host
Kernel

Guest
App X

U

Guest
Kernel

:I <

]

Hypervisor

TEE

45

Explicit and transitive trust of the kernel and hypervisor

% géngrisglr Kemel Security FirmGuide [ASE21]
(supported by ECMO [CCS21] Host Guest
. hypervisor if any) App App X
2 i i
Securitv of ViDeZZo [SP23]
X Ly ¢ HyperPill [SEC24] Host Guest
hypervisor itself Truman [NDSS25] Kernel Kernel
Trust §
Trusted execution
environment (TEE) iy
§ < D
X H :
In-trust domain ypervisor TEE
Trusted trusted execution
> Untrusted

Kernel securit
y FirmGuide [ASE21]

Explicit and transitive trust of the kernel and hypervisor
(supported by ECMO [CCS21] Host Guest

Hypervisor
OS Kernel
hypervisor if any) ﬁ App ﬁ App
ViDeZZo [SP23]

X Security of > HyperPill [SEC24] Host Guest

Y

hypervisor itself Truman [NDSS25] Kernel Kernel

U

Trust
Trusted execution AT
environment (TEE) iy
> R
X ’ .
In-trust domain ypervisor TEE
Trusted trusted execution X
> Untrusted

Kernel securit
y FirmGuide [ASE21]

Explicit and transitive trust of the kernel and hypervisor
(supported by ECMO [CCS21] Host Guest

Hypervisor
OS Kernel
hypervisor if any) ﬁ App ﬁ App X
ViDeZZo [SP23]

X Security of > HyperPill [SEC24] Host Guest

Y

hypervisor itself Truman [NDSS25] Kernel Kernel

U

Trust
Trusted execution > :I AT
environment (TEE) iy
X § T
In-trust domain > Hypervisor TEE
Trusted trusted execution X
> Untrusted

Tango: Extracting Higher-Order Feedback through
State Inference (RAID’24 Best Paper Award)

Finite State Machine Message Format
remens 1=
StateAFL |~ T NsFuzz | Tango
AFLNet NyxNet SGFuzz [
I | | >
2020 2021 2022 2023 2024 2025 2026

How can we extract the states in a generic way?

Model-guided kernel execution FirmGuide [ASE21]

How to run a Linux kernel for x86? QEMU!
What about running Linux kernels used in ARM/MIPS-based IoT devices?

- Challenges: ARM/MIPS devices have fragmented peripherals
- Aim at a minimum best effort to boot with an interactive shell [Firmcuide Ase21]

ARM chip example: pIxtech,nas782x ‘ Fidelity for booting
CPU | Arm11MPCore High
Memory | up to 512M High
Interrupt controller | pIxtech,nas782x-rps) ¢ High
Time-related | rps-timer, oscillator, sysclk, plla, pllb, stdclk, twdclk X High
UART | ns16550a High
Other peripherals | gmacclk, pcie, watchdog, sata, nand, ethernet, ehci, leds | X Low

50

Model-guided kernel execution FirmGuide [ASE21]

Linux kernel subsystem defines a state machine driven by driver behavior

A peripheral model = a state machine + driver behavior as transition conditions

Interrupt
Subsystem

T

Driver 1

Driver 2

[TCA]

—

[TC C2]

:> Driver 1: { D1TC1, D1TC2, D1TC3 }
Driver 2: { D2TC1, D2TC2, D2TC3 }

51

Model-guided kernel execution FirmGuide [ASE21]

It starts

The
Linux
Kernel

[
QeEvu

@virt ;\(.Kv M

State 1

52

Model-guided kernel execution FirmGuide [ASE21]

Our peripheral model is at state 1 and have monitored the behavior of the Linux
kernel, specifically by logging MMIO rw sequences (MMIO R/W Seqs)

MMIO R/W &Lhneux
l l lll Kernel

QeEvu

@virt : é\;KVM

State 1

53

Model-guided kernel execution FirmGuide [ASE21]

Our peripheral model goes to state 2 if the MMIO R/W Seq matches D1TC1

MMIO R/W &Lhneux
l l lll Kernel

@EeEvu

@virt : é\;KVM

State 2

54

Model-guided kernel execution FirmGuide [ASE21]

Linux kernel runs

MMIO R/W MMIO R/W &The

Kernel
@evu

@vi rt y'.\;KV M

State 2

Model-guided kernel execution FirmGuide [ASE21]

Our peripheral model is at state 2 and have monitored another MMIO R/W Seq

MMIO R/W MMIO R/W ‘&The

Kernel
@evu

@vi rt y'.\;KV M

State 2

56

Model-guided kernel execution FirmGuide [ASE21]

Our peripheral model goes to state 3 with a value back

MIMO R/W MIMO R/W ‘&The

57

Model-guided kernel execution FirmGuide [ASE21]

Until we get an interactive shell
Booted

MIMO R/W MIMO R/W MIMO R/W &Iﬂ\eux

—uml " 1 Hil =
@evu

@virt ' y'.\;KVM

58

Model-guided kernel execution FirmGuide [ASE21]

Techniques

- Use KLEE to extract MMIO R/W Seqgs from Linux kernel drivers
- Use a template render to composite a QEMU machine

Results

- We first enabled the fuzzing of embedded Linux kernels for 26 SoCs
- We managed to develop exploits, which can never be easily done without

successful rehosting.
- We showed that backporting kernel patches for loT devices was not yet

timely.

59

